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Abstract. One of the computationally intensive tasks in the numerical simulation of dynamic
systems discretized on an unstructured grid over the sphere is to find a number of spherical minimum
covering polygons of given locations, whose vertices are chosen from the grid points. Algorithms have
been proposed attempting to perform this task efficiently. However, these algorithms only reduce the
linear search time for each polygon vertex candidate by a constant factor, and their polygon search
algorithms are mostly heuristic and tailored for specific classes of grids. With the increase in grid
resolution, the number of unstructured grid types, and dynamic generation of variable resolution
grids, these algorithms are no longer suitable for the computational task. It is necessary to develop
a more general, efficient, and robust search algorithm. We propose an algorithm, built on a modified
kd-tree algorithm, to search for minimum covering polygons of given locations from a set of grid points
on the sphere. After an O(n logn) time initialization to construct the kd-tree from n grid points,
the proposed algorithm takes an O(logn) expected time to find the minimum covering polygon for a
given location on the sphere (or the same expected asymptotic time with a smaller constant to obtain
an approximate solution). We present the modified kd-tree algorithm, showing its applicability to the
search problem. We present the search algorithm for the spherical minimum covering polygon and an
analysis of the algorithm’s computational complexity. To demonstrate the computational efficiency
of the proposed search algorithm, we apply it to the data sets of randomly generated data points on
the sphere from various distributions and to the data sets of two types of spherical grids, icosahedral
grid and Gaussian grid, which are widely used in the numerical simulation on spherical bodies.
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unstructured grid
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1. Introduction. Unstructured grids on the sphere have become more popular
in recent years in the development of global models that numerically simulate the fluid
dynamics on Earth and other spherical bodies [17, 22, 19, 20]. During the preprocess-
ing (initial condition generation, data assimilation, stencil indexing computation) and
postprocessing (remapping to various grids for diagnosis and visualization), various in-
terpolation and projection operations are often required. One of the computationally
intensive tasks associated with these operations is to find a set of spherical polygons
from the discretization grids for a number of given locations, such that each polygon
covers a given location and has the minimum combined distance from its vertices to
the given location. We refer to this spherical polygon as minimum covering spherical
polygon, or minimum covering polygon (MCP). We will give the formal definition of
MCP in a later section. Intuitive and straightforward algorithms to search for an
MCP have been suggested and implemented. These algorithms reduce the search
time by presorting and indexing the grid points and latitudinal zones and by limiting
the range of the geographic coordinate values for the search (e.g., [14]). However,
these methods only improve the computational efficiency by a constant factor over
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A1670 NING WANG

an exhaustive linear search, in finding the MCP vertex candidates, and their MCP
search algorithms are mostly heuristic and often designed for specific classes of grids.
With the increase in the grid resolution, the number of unstructured grid types, and
dynamic generation of variable resolution grids, the need has arisen to create a more
general, efficient, and robust algorithm for this computational task. As one would
expect, the desired MCP search algorithm should be built on an efficient proximity
search algorithm on the sphere.

Proximity search on the sphere is in essence an optimization problem in metric
space. Let n be the number of points distributed over the sphere. Straightforward
nonhierarchical linear search methods have an O(n) time complexity with or without
precomputed and indexed search regions. Research in computational geometry offers
a rich library of algorithms for proximity search. Nearest neighbor search algorithms
for general metric space are asymptotically better [11, 25, 8] than linear time search
algorithms. Furthermore, it is straightforward to show that a nearest neighbor search
on the sphere with its distance metric defined as the great circle distance is equivalent
to a nearest neighbor search in its corresponding ambient three-dimensional Euclidean
space. Therefore, we can adopt one of those more efficient nearest neighbor search
algorithms in Euclidean space [12, 6, 9, 2].

From the perspective of computational complexity, there are two classes of nearest
neighbor search algorithms for Euclidean space, one offers logarithmic or sub-linear
worst case query bounds at the expense of greater preprocessing time and space, and
the other offers logarithmic expected query time bounds with mostly linear preprocess-
ing space. In a d dimensional Euclidean space, for the former class of algorithms, the
worst case query time are typically bounded byO(2O(d) log(n)) (orO(dc log(n)), c ≥ 5)
with O(nO(d)) preprocessing space [1]. More recent research of the subject has been
focused on the approximate algorithms for high dimensional space that alleviate the
“curse of dimension,” the exponential growth of query time and preprocessing space
with dimension d ([3, 10, 13], for example).

From the requirement of the MCP search algorithm and practical considerations,
we propose to use the kd-tree algorithm [7, 12], with some additions and modifications,
in the MCP search algorithm. A kd-tree is a balanced binary tree that partitions a
general multidimensional Euclidean space. The nearest neighbor search algorithm
based on the kd-tree is known to be efficient in a low dimensional Euclidean space.
After an O(n logn) time initialization, a kd-tree search algorithm takes an O(log n)
expected time to answer the nearest neighbor query, assuming that distribution of
data points are largely uniform [12]. Although grid points on the sphere are not uni-
formly distributed in three-dimensional Euclidean space, they are, nevertheless, rather
regularly distributed in its subspace, a two-dimensional manifold (a two-dimensional
sphere). Besides, spherical grid points reside in a low dimensional space, which is
most important for the performance of the nearest neighbor search in Euclidean space.
Numerical experiments we conducted have shown that for most spherical grids, the
kd-tree search algorithm (with the required modifications) performs extremely well.

It is difficult and inefficient to use the classic kd-tree in the MCP search algorithm.
The main issue is that if we have a large number of neighboring grid points that reside
on the same half space, relative to the query point (a given location for an MCP
search), the search of kd-tree will return many nearest neighbor points that cannot
make a spherical polygon that covers the query point. Therefore, it is essential to
modify the kd-tree so that the search space is limited to a specified angular area (a
lune on the sphere). In other words, we modify kd-tree to do a “directional” search
for the nearest neighbor.
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MINIMUM COVERING POLYGON SEARCH ON SPHERE A1671

With the proposed modified kd-tree, we can construct an efficient MCP search
algorithm. Under the guidance of a few geometric propositions presented in this
article, we create a search algorithm that finds the MCP for a given point with a small
constant number of calls to the nearest neighbor search routine of the modified kd-tree
algorithm. Briefly, for a given point p, we iteratively search the nearest neighbors of
p in specified lunes and find and update the candidates for vertices of the MCP. In an
expected constant number of iterations, the search algorithm goes through all possible
combinations and finds the solution, a sequence of vertices that forms the MCP for p.

The article is organized as follows: section 2 discusses the feasibility of using
the modified kd-tree for the MCP search problem and gives a detailed description of
the modified kd-tree algorithm. In section 3, we present the MCP search algorithm
based on the modified kd-tree and show its space and time complexity for the average
and the worst case. Section 4 presents several experiment results to confirm the
time complexity of the modified kd-tree algorithm and the MCP search algorithm.
Both search algorithms are tested with random data sets of different resolutions and
distributions, and the MCP search algorithm is applied to two specific spherical grids,
the icosahedral grid and Gaussian grid, of different resolutions. Finally in section 5,
we conclude the article with a summary of the performance, extensibility, and other
possible applications of the proposed algorithms.

2. Nearest neighbor search on the sphere and the modified kd-tree
algorithm. The algorithms for a nearest neighbor search in a Euclidean space are
much more efficient than those in a general metric space, especially in relatively low
dimensional settings. In the following, we claim that a nearest neighbor search on a
sphere using the angular distance metric can be done with a nearest neighbor search
in its corresponding Euclidean space.

2.1. Metric spaces of equivalent proximity relations. The next proposition
and the arguments followed show that Euclidean space and angular distance metric
space on the sphere are equivalent in terms of proximity relation.

Proposition 2.1. Let (X, d1) and (X, d2) be two metric spaces, where X is a set
and d1, d2 are metrics on X. The two spaces have the equivalent proximity relation if
for any u0 ∈ X, two closed metric balls

B(u0, r1, d1) = {x ∈ X |d1(u0, x) ≤ r1} and
B(u0, r2, d2) = {x ∈ X |d2(u0, x) ≤ r2}

are equal for any r1 and a corresponding r2.
It is trivial to show the proposition. Since the metric balls B(u0, r1, d1) and

B(u0, r2, d2) are identical when r1 and r2 are set to the respective nearest neighbor
distances, two metric spaces must have the same nearest neighbor for any point u0.

Now we consider two metric spaces (X, da) and (X, de), where X is a point set on
the unit (d− 1)-sphere in Rd, and da and de are the angular and Euclidean distance
metrics, respectively. For u, v ∈ X , u = (u1, u2, . . . , ud), v = (v1, v2, . . . , vd),

da(u, v) = cos−1 (u1v1 + u2v2,+ · · ·+ udvd),

de(u, v) = ((u1 − v1)
2 + (u2 − v2)

2 + · · ·+ (ud − vd)
2)1/2.

It is straightforward to verify that the two metric spaces have the equivalent
proximity relation. Let θ be the angular distance between u and v. Since

da(u, v) = θ, de(u, v) = (2− 2 cos(θ))1/2 = 2 sin(θ/2), 0 ≤ θ ≤ π,(2.1)

we have B(u0, ra, da) = B(u0, re, de) when re = sin(θ/2)(θ/2)−1ra.
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A1672 NING WANG

Therefore, nearest neighbor search on the 2-sphere with respect to the angular
distance metric is equivalent to the nearest neighbor search in its ambient three-
dimensional Euclidean space.

Note that the above conclusion is valid for a general (d − 1)-unit sphere in d
dimensional Euclidean space.

2.2. The kd-tree algorithm. A kd-tree is a binary tree that uses orthogonal
hyperplanes to partition a multidimensional Euclidean space. It is known to be an
effective data structure for various geometric queries.

In the following, we give a brief description of the kd-tree and its nearest neighbor
search algorithm to provide some background information for the description of the
modified kd-tree algorithm in the next subsection. For more details of the analysis
and implementation of the kd-tree algorithm, interested readers are referred to the
cited references.

In a kd-tree, each node represents a bounded space of d dimensions, and each
child node represents a subspace of its parent node. The union of all bounded spaces
at any tree level represents the whole search space. The algorithm to construct a
kd-tree is as follows: Starting at the root node of the tree, the algorithm selects a
dimension according to a given dimension-selection algorithm and divides the space
into two subspaces such that each subspace has an equal number of points. Two
child nodes are then created for the two subspaces and are linked to their parent. The
above procedure is carried out recursively on the subspaces until the number of points
in each node at the bottom level of the tree reaches a specified number (bucket size).
The nodes at the bottom level of the tree are called leaf nodes, or buckets.

The search algorithm works as follows: First, it traverses down the kd-tree recur-
sively, following the subspaces that are on the same sides of the hyperplanes as the
query point, to the leaf node. In the leaf node, it computes the distances between the
query point and all data points within the node to find the current nearest neighbor
point (CNNP) and the current nearest neighbor ball (CNNB) which is centered at
the query point with the current nearest neighbor distance as the radius.

The search algorithm then starts a procedure to unwind the recursive search
and update the CNNP and CNNB if necessary. The procedure checks if the CNNB
intersects the subspace of the sibling node. If it does, the algorithm searches the sibling
node by invoking this entire search algorithm at the sibling node, which includes
traversing down from there to a leaf node, and possibly updating the CNNB and
CNNP. If it does not, or at the completion of the search of the sibling node, the
search algorithm returns (moves up) to its parent node and repeats the procedure at
that level. The search terminates when it returns from the two recursive calls at the
root node.

The time required to construct the kd-tree is determined by the depth (or equiva-
lently the bucket size) of the kd-tree. It is bounded by O(n log(n)) if an O(n) median
search algorithm is used. The space requirement for the kd-tree data structure is
determined by the number of nodes in the kd-tree, which has the maximum value of
2n. Therefore, the space complexity is bounded by O(n).

To search for m nearest neighbors of the query point, the algorithm just needs to
be modified to have a list containing m CNNPs and to set the CNNB’s radius to be
the longest nearest neighbor distance among all CNNPs currently in the list.

2.3. The modified kd-tree algorithm with an angularly bounded search
space. The difficulty of searching for MCPs with the classic kd-tree is that we can-
not specify a direction, or a range of directions, to search for the nearest neighbor.
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1π

π 2

hp1 hp2

tv2tv1
Rectangle outside search space

Corner test positive

Corner test negative

Rectangle inside search space

Fig. 2.1. Illustration of the overlap test process of the modified kd-tree search algorithm. The
lighter shades are two half spaces, and the darker shade is the intersection of the two half spaces,
the area for the nearest neighbor search.

This special feature of nearest neighbor search is critical to the implementation of an
efficient MCP algorithm, as we have discussed in the previous section.

We propose to modify the kd-tree algorithm as follows.
The kd-tree will be constructed with the original algorithm. To search for the

nearest neighbor in a bounded angular space, we pass to the search routine, in addition
to a query point p, a pair of normal vectors hp1 and hp2, which specify the boundaries
of the two half spaces. The intersection of the two half spaces represents the angular
space to be searched. During a search, for each hyperrectangular subspace represented
by a kd-tree node, we test if it overlaps with the bounded search space. If it does, we
proceed the search as the classic kd-tree. Otherwise, we skip the subspace and go on
to the next subspace.

To efficiently perform the above test, we maintain a pair of test vectors tv1 and
tv2 that represent two out of 2d vertices, of the d dimensional hyperrectangle being
tested, such that vectors tv1− p and tv2− p have the greatest projections on the two
normal vectors hp1 and hp2. At each node, we compute the projections of tv1 and tv2

on hp1 and hp2, respectively. If either projection is negative, then the hyperrectangle
being tested does not overlap with the partial space specified by hp1 and hp2, the
search space. If both projections are positive, then it is likely (but not always) that
the hyperrectangle being tested overlaps with the search space. In other words, the
above algorithm tests the necessary but not sufficient condition for overlap of the
search space and a hyperrectangle. At the leaf level, we test each point within the
leaf node and only update the CNNP and CNNB for the points that are inside the
search space.

Figure 2.1 illustrates the above algorithm in a two-dimensional case. In the fig-
ure, the wedge-shaped area (in darker shade) is the intersection of two half spaces
(in lighter shade) that needs to be searched; rectangular areas are the partitioned
subspaces to be tested for overlap. Note that in addition to the 16 small rectangular
subspaces, there are also 8, 4, and 2 larger rectangular subspaces in the figure that
correspond to kd-tree nodes at different upper levels. The two upper vertices of each
subspace are used as test vertices (vectors) tv1 and tv2, since they have the greatest
projections on the normal vectors hp1 and hp2. Each circle marker indicates that the
vertex of the subspace is tested positive and each square marker indicates a negative

D
ow

nl
oa

de
d 

05
/0

8/
15

 to
 1

40
.1

72
.2

53
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1674 NING WANG

result. A solid round marker in the center of the subspace indicates that the subspace
is likely overlapped with the search space, and a solid square marker indicates that its
subspace is outside the search area and should not be included for further examination.
(For the clarity of the figure, we only plot the markers for the leaf level subspaces.)

The partitioned subspaces to be examined change as the search moves to a new
node, while the vertices that the test vectors use for each subspace (the two upper
vertices of each rectangle in the case shown in Figure 2.1) remains the same. These
vertices are determined by the two normal vectors hp1 and hp2. For computational
efficiency, we compute the tv1 and tv2 as we traverse the kd-tree. Due to the orthog-
onal partition scheme of the kd-tree, each time the search moves to a new node, there
is at most one component of the test vector that needs to be updated.

The complete algorithms for the modified kd-tree is given here. The tree con-
struction algorithm needs no modification. It is enclosed for the sake of completeness.
The search algorithm contains several changes. The underlined statements indicate
the additions and modifications to the classic kd-tree search algorithm.

2.4. A brief discussion of the performance of the modified kd-tree al-
gorithm. First, we examine the situation of searching the nearest neighbor on the
sphere without a pair of bounds. In this case, the modified kd-tree should behave just
like the classic kd-tree.

Friedman, Bentley, and Finkel have given an expected search time analysis for
the kd-tree algorithm [12]. They asserted that under certain assumptions, nearest
neighbor search with kd-tree takes an O(log n) expected time. The two important
assumptions are (1) the hyperrectangles are relatively compact, meaning that the
maximum ratio between the longest and shortest sides are not too great, and (2) the
dimensionality d of the search space is relatively small (d � log(n)), and it is inde-
pendent of the data size n. In our case, condition (2) is met perfectly, with n ranging
from hundreds of thousands to millions and d being 3. As for condition (1), if we
adopt the strategy used in [12] to partition the dimension with the maximum spread
of data points in dimToPartition() (line 13 in Algorithm 2), we will have relatively
compact hyperrectangles, thus the condition will be mostly satisfied as well.

Now we examine the nearest neighbor search in a lune. The computation at
each node remains minimum, O(d) operations. We compare the number of nodes
visited by the modified kd-tree and the classic kd-tree. For the modified kd-tree, if it
has the same CNNB radiuses along the traverse path as the classic kd-tree, because
of the additional bound check for the lune, the search algorithm will visit less nodes
(hyperrectangles). However, at the same time, because of this bound check, the search
algorithm takes more time to find qualified CNNPs and to update the radius of the
CNNB, causing more nodes to be visited. The situations could become extremely
unfavorable for the modified kd-tree as the lunes to be searched become very narrow
and the initial setting of the radius of the CNNB is significantly delayed. In these
situations, it could improve the search performance dramatically if we can provide a
reasonable initial value for the radius of the CNNB (search range) to start the search.
Fortunately, for most applications including MCP search, it is not difficult to provide
such an initial value. In MCP search, as we will find, the narrower the lune to be
searched, the more accurate (smaller) search range is available to specify.

3. Search algorithm for MCPs on the sphere. We first define the spherical
MCP for a given point p.

Definition 3.1. On the sphere S, for a given point p ∈ S and a set of points
P ∈ S, the spherical MCP for p (MCP(p)) of m vertices is the simple polygon on the
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Algorithm 1. kd-tree search (modified from the classic kd-tree search

algorithm).

1: procedure SearchKDTree (p, hp1, hp2, inclusive, range ,nni ,nnd , m)
2: Set nni[1:m] (Indexes of nearest neighbors) to null
3: Set nnd[1:m] (Radiuses of the nearest neighbor balls) to range
4: Set dos[1:d] (Distances to other sides of the partition) to 0.0
5: Set the testing vertices tv1[1:d] ← sign(hp1[1:d]), tv2[1:d] ← sign(hp2[1:d])
6: {Make all arguments available in the global space accessible by all functions.}
7: Convert p = (φ, λ) to p = (x1, x2, x3)
8: SearchTree(p, root)
9: end procedure

10: procedure SearchTree (query, node)
11: if node.leaf = true then
12: For the points in the bucket within the search subspace, compute and update the

nni[1:m] and nnd[1:m] if necessary.
13: return
14: else
15: ds ← query(node.partDim ) - node.partVal
16: if ds < 0.0 then
17: curPsum ← psum
18: SearchTree(query , node.leftChild)
19: psum ← curPsum + d2s − dos[node.partDim ]
20: Save dos [node.partDim ], tv1,2[node.partDim ]

21: dos[node.partDim ]← d2s
22: tv1,2[node.partDim ]← max(node.partVal , tv1,2[node.partDim ])
23: if psum < nnd [m] and InSearchSpace(tv1, tv2) then
24: SearchTree(query , node.rightChild)
25: end if
26: Restore dos[node.partDim ], tv1,2[node.partDim ] to the saved values.
27: else
28: curPsum ← psum
29: SearchTree(query , node.rightChild)
30: psum ← curPsum + d2s − dos[node.partDim ]
31: Save dos [node.partDim ], tv1,2[node.partDim ]

32: dos[node.partDim ]← d2s
33: tv1,2[node.partDim ]← min(node.partVal , tv1,2[node.partDim ])
34: if psum < nnd [m] and InSearchSpace(tv1, tv2) then
35: SearchTree(query , node.leftChild)
36: end if
37: Restore dos[node.partDim ], tv1,2[node.partDim ] to the saved values.
38: end if
39: end if
40: return node
41: end procedure

42: function InSearchSpace (tv1, tv2)
43: if (tv1 − query) · hp1 ≥ 0.0 ∧ (tv2 − query) · hp2 ≥ 0.0 ∧ inclusive = true then
44: return true
45: end if
46: if (tv1 − query) · hp1 > 0.0 ∧ (tv2 − query) · hp2 > 0.0 ∧ inclusive = false then
47: return true
48: end if
49: return false
50: end function
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Algorithm 2. kd-tree construction.
1: procedure Build-kd-tree
2: ml ← logn {maximum tree levels}
3: root ← BuildTree(points , 1, n, 1)
4: end procedure

5: function BuildTree (points , lower , upper , level )
6: node ← newNode()
7: if level > ml then
8: node.leaf ← true
9: node.lowerBound ← lower , node.upperBound ← upper

10: else
11: node.leaf ← false
12: middle ← (lower + upper)/2
13: node.partDim ← dimToPartition(points , l, u) {Find a dimension to partition}
14: node.partVal ← points [node.partDim ][middle ] {Record partition value}
15: partition(points , lower , upper , node.partDim) {Partition points into 2 subsets}
16: node.leftChild ← BuildTree(points , lower ,middle, level + 1)
17: inode.rightChild ← BuildTree(points ,middle, upper , level + 1)
18: end if
19: return node
20: end function

sphere, defined by a sequence of m points vi ∈ P, such that (i)
∑m

i=1 d(p, vi) is mini-
mized, where d(., .) denotes the geodesic distance on S, and (ii) p ∈ Π(SPL(p)), where
Π(SPL(p)) is the point set of the spherical polygon defined by the vertex sequence
{v1, v2, . . . , vm}.

Apparently, according to Proposition 2.1, in the above definition d(p, vi) can be
replaced with the Euclidean distance ‖p− vi‖.

Now we examine the relations and connections between the nearest neighbors of
p and the vertices in MCP(p). Since it will be shown later that an MCP(p) (m > 3)
can be easily constructed from the minimum covering triangle (MCT(p)), we start
the discussion with the case of m = 3.

For the ease of description, we define the following notation.
Letters p, q, r, s, t, u, v, denote unit vectors on the sphere S. As a convention for

this article, p denotes the point for which the MCP is being searched, and r the
nearest neighbor of p.

Geodesic circle πu,v = {x | (u− v/(u · v)) · (x − u) = 0, x ∈ S}.
Geodesic circle π⊥

u,v = {x | (u× v) · (x− u) = 0, x ∈ S}.
Half-sphere Hu,v = {x | (u− v/(u · v)) · (x− u) ≥ 0, x ∈ S}.
Half-sphere H⊥

u,v = {x | (u× v) · (x− u) ≥ 0, x ∈ S}.
Bounded partial space on the sphere (Lune) Ls,t,u,v = H⊥

s,t ∩H⊥
u,v

Here, (u− v/(u · v)) is a vector in hyperplane spanned by u and v, tangential at
u, from the projection of v on the tangent plane to u.

Proposition 3.2. Let r be the nearest neighbor of p, on the sphere S. Then r ∈
MCT(p).

Proof. Suppose that MCT(p) = {v1, v2, v3} and r is the nearest neighbor of p.
Without loss of generality, we assume that r and v3 both belong to the partial space
Lp,v2,v1,p. Then {v1, v2, r} also make a spherical triangle that covers p. Since r is
closer to p than v3, r should replace v3 in MCT(p).
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MINIMUM COVERING POLYGON SEARCH ON SPHERE A1677

Therefore, the search for the MCT(p) is reduced to finding a pair of two closest
points to p, which together with r form a spherical triangle that covers p. Furthermore,
if we can identify one of the two vertices, then the last one can be easily found by one
nearest neighbor search in a specified lune.

It is apparent that the second vertex must be in the half-sphere Hp,r. This half-
sphere can be considered as a union of several lunes divided by geodesic circle π⊥

p,qi ,
where qi are points in half-sphere Hp,r. For each subspace (lune), we search for a
closest pair of points (one point ru in the lune and the other in a lune determined by
p, r, and ru) as the candidates for the MCT(p). The best pair of candidates, which
has the smallest combined distance, is the pair of vertices that we are searching for.

The following proposition indicates how to find this pair of two vertices for a
specified subspace after the first vertex of MCT(p), r, is found.

Proposition 3.3. Let r be the nearest neighbor of p. If ru is the nearest neighbor
of p in the partial space Lq,p,r,p (Lp,q,p,r), where q is a point in half-sphere Hp,r, then
point ru is the candidate for a member of MCT(p) for the partial space Lq,p,p,ru
(Lp,q,ru,p).

Proof. We show the proposition for one of the two cases, as the two cases are
entirely symmetric. Let ru be the nearest neighbor of p in Lq,p,r,p, and s be the
nearest neighbor of p in Lru,p,p,r. Apparently, r, ru, and s makes a spherical triangle
that covers p. Since no point in Lq,p,p,ru is closer to p than ru, and since point r′u
in Lq,p,p,ru can only have an s′ in Lr′u,p,p,r ⊂ Lru,p,p,r to form a spherical triangle
that covers p, and by definition s′ cannot be closer to p than s, the combined distance
from ru, s to p is minimum for any qualified triangle that has one vertex in the partial
space Lq,p,p,ru .

Corollary 3.4. Let r be the nearest neighbor of p, and ru be the nearest neighbor
of p in Lq1,p,p,q2 , where q1 and q2 are points in H⊥

r,p∩Hp,r and H⊥
p,r∩Hp,r, respectively.

If ru ∈ π⊥
p,r, then ru is the candidate for a member of MCT(p) for the partial space

Lq1,p,p,q2 . If q1, q2 ∈ πp,r and ru ∈ π⊥
p,r, then ru ∈ MCT(p); in addition, if rn is the

nearest neighbor of p in P \ {r, ru}, then vertex set {r, ru, rn} forms MCT(p).
Proof. From Proposition 3.3, if ru ∈ π⊥

p,r, ru is the candidate for a member of
MCT(p) for the partial space Lq1,p,r,p ∪ Lp,r,p,q2 = Lq1,p,p,q2 . When q1, q2 ∈ πp,r,
Lq1,p,p,q2 = Hp.r, the entire half-sphere. We know there is at least one vertex of
MCT(p) in this half-sphere, thus ru ∈ MCT(p). Since r, p, and ru lie on the same
great circle, it is apparent that the nearest neighbor of p in P \ {r, ru}, rn, together
with r, ru form a spherical triangle that covers p.

With Propositions 3.2 and 3.3, using the modified nearest neighbor search algo-
rithm, we can find the minimum covering spherical triangle for any given point p and
a set of points P on the sphere with the following strategy. First, we find the nearest
neighbor of p in P , r, and add it to MCT(p) as the first vertex. Then we search the
half-sphere Hp,r for the second vertex with this procedure.

Initially, we set hp1, hp2 toHp,r, and then repeat the following: finding the nearest
neighbor rui as a possible candidate for the second vertex in the lune defined by hp1

and hp2; (each geodesic bound of a lune is inclusive when it equals πp,r, and exclusive
otherwise) updating either hp1 to H⊥

rui
,p or hp2 to H⊥

p,rui
, depending on which side of

the geodesic circle π⊥
p,r the point rui resides; finding the nearest neighbor in the lune

Lrui
,p,p,r (or Lp,rui

,r,p), as a possible candidate for the third vertex; and updating the
current best candidates for the second and third vertices of MCT(p) if necessary. To
calculate the optimal nearest neighbor search ranges for the second and third vertices,
one should use the distances from p to the current best candidates for the second and
third vertices, r, and rui .
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r

u1

1

ru2
r 2

3

ru3

4
5

ru4

...

p

Fig. 3.1. Illustration of the MCP search algorithm. In the figure, p is the query point, and
the small circles are the data points; r is the nearest neighbor of p, and rui is the nearest neighbor
found during the ith iteration, in the lune marked by the arc i.

The above steps repeat until one of the following two conditions is satisfied:
(1) there is no rui that can be found in the current lune which satisfies d(p, rui ) <
d(p, v1) + d(p, v2) − d(p, r), where v1 and v2 are the current best candidates for the
second and third vertices; (2) an rui is found in hyperplane π⊥

p,r (Corollary 3.4).
Figure 3.1 illustrates the main idea of the MCT search algorithm with an example.

The two shaded sectors indicate the lunes that have been searched after two iterations,
where ru1 is the nearest neighbor of p in Hp,r. Each arc marked with i indicates the
lune being searched in the ith iteration for the nearest neighbor rui . The triangle in
dashed lines is the MCT(p).

Once the minimum covering spherical triangle MCT(p) is found, it is straightfor-
ward to find the MCP(p) with more than three vertices.

Proposition 3.5. Let MCP(p) be a minimum covering spherical polygon of p
with m vertices, where m > 3. Let v1, v2, and v3 be the three vertices of the minimum
covering spherical triangle, MCT(p). Let P be the set of points on the sphere to be
searched. Then MCP(p) = {v1, v2, v3}�{v4, . . . , vm}, where {v4, . . . , vm} is a sequence
of m− 3 nearest neighbors of p, in P \ {v1, v2, v3}, and operator � denotes the insert
operation that creates a simple spherical polygon of m vertices.

Proof. Since {v4, . . . , vm} are closer to p than any other points in P \ {v1, v2, v3},∑m
i=1 d(p, vi) is minimized. We just need to show MCP(p) = {ṽ1, . . . , ṽm} covers

p, where {ṽ1, . . . , ṽm} is an appropriate permutation of the sequence {v1, . . . , vm}.
Following the same logic of the proof for Proposition 3.2, we infer that no member of
{v4, . . . , vm} can be inside the spherical triangle MCT(p) = {v1, v2, v3}, which implies
that the spherical polygon created with {v1, v2, v3} and {v4, . . . , vm} can only be a
union of the spherical triangle MCT(p) = {v1, v2, v3} and some additional spherical
polygons that are formed with vertices {v4, . . . , vm} and vertices in MCT(p). Thus
we can conclude that MCP(p) = {ṽ1, . . . , ṽm} covers p.

We give the entire algorithm in Algorithm 3. Note that in the description of
the algorithm notation Hu,v and H⊥

u,v denote the normal vectors of the associated
half-spheres. Notice that the function Insert() at line 49 is not specified. There could
be different ways and preferences to insert these m − 3 nearest neighbor points to
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MINIMUM COVERING POLYGON SEARCH ON SPHERE A1679

Algorithm 3. MCP search algorithm.
1: function MCP-Search (p, m, mcp)
2: mcp[1 : m]← 0,mcpd [1 : m]← π, incl [1 : 2]← true ,nv ← 1
3: SearchKDTree (p,0,0, true, π,nni ,nnd , 1)
4: mcp[1]← nni [1],mcpd [1]← nnd [1], r ← points [mcp[1]] – Proposition 3.2
5: if p = r then
6: CompleteMCP(mcp,nv) – The MCP(p) will be formed with m NNs.
7: return
8: end if
9: hpv2[1]←Hp,r, hpv2[2]←Hp,r, range ← π,nv ← 3

10: while true do
11: SearchKDTree (p, hpv2[1], hpv2[2], incl , range ,nni ,nnd , 1)
12: if nni = NULL then
13: CompleteMCP(mcp,nv) – The MCT(p) is found, to complete the MCP(p).
14: return
15: end if
16: cvi [2]← nni [1], cvd [2]← nnd [1], ru ← points [cvi [2]]
17: if H⊥

r,p · ru = 0 then
18: SearchKDTree (p,0,0, true, π,nni ,nnd , 3) – Corollary 3.4
19: if nni [2] �= cvi [2] then
20: cvi [3]← nni [2], cvd [3]← nnd [2]
21: else
22: cvi [3]← nni [3], cvd [3]← nnd [3]
23: end if
24: if cvd [2] + cvd [3] < mcpd [2] +mcpd [3] then
25: mcpd [2 : 3]← cvd [2 : 3],mcp[2 : 3]← cvi [2 : 3]
26: end if
27: CompleteMCP(mcp,nv) – The MCT(p) is found, to complete the MCP(p).
28: return
29: else
30: if H⊥

r,p · ru > 0 then
31: hpv3[1]←H⊥

ru,p, hpv3[2]←H⊥
p,r, hpv2[1]← hpv3[1], incl [1]← false

32: else
33: hpv3[1]←H⊥

p,ru , hpv3[2]←H⊥
r,p, hpv2[2]← hpv3[1], incl [2]← false

34: end if
35: end if
36: range ← mcpd [2] +mcpd [3]− cvd [2]
37: SearchKDTree (p, hpv3[1], hpv3[2], true, range ,nni ,nnd , 1)
38: cvi [3]← nni [1], cvd [3]← nnd [1]
39: if cvd [2] + cvd [3] < mcpd [2] +mcpd [3] then
40: mcpd [2 : 3]← cvd [2 : 3],mcp[2 : 3]← cvi [2 : 3]
41: end if
42: range ← mcpd [2] +mcpd [3]−mcpd [1]
43: end while
44: end procedure

45: function CompleteMCP (mcp,nv) – Proposition 3.5
46: SearchKDTree (p,0,0,∞,nni ,nnd ,m)
47: for i = 2→ m do
48: if nni [i] �= mcp[1] . . . and nni [i] �= mcp[nv] then
49: Insert(mcp,nni [i])
50: end if
51: end for
52: end function
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Fig. 3.2. Illustration of two different ways to form a simple polygon from the same set of five
vertices. In the figure, two identical MCTs are depicted with the solid lines, and two different 5-sided
polygons are depicted with both solid and dashed lines, and two different sequences of vertices.

an MCT(p) to create a simple polygon (Figure 3.2, for example). We leave the specifics
of this function to the implementer. The upper bound for the time complexity of this
insert function should be O(m2), which is independent of n, the size of P .

3.1. Analysis of the time complexity of the MCP search algorithm.
Through the discussion in section 2.4, we can assume that the modified kd-tree finds
the nearest neighbor in an expected O(log(n)) time. Now, we examine how many
expected iterations there are for the while loop (from line 10 to line 43) in Algorithm 3.

For all practical purposes, we assume that the distribution of the data points over
the sphere is largely uniform. With this assumption, we have the following claim.

Claim 3.6. The expected number of iterations for the MCP search algorithm
(Algorithm 3) is independent of the number of points that are uniformly distributed
on the sphere.

We argue the claim without a rigorous proof.
Let a set of n data points be randomly, uniformly distributed on the unit sphere,

and let us assume that the number of points within a given distance from a random
location follows Poisson distribution. Through some basic calculation of geometric
probability, we find that the expected nearest neighbor distance for a random query
point p, λd to be 1/2(4π/n)1/2. Furthermore, it can be calculated that the expected
distance from a query point p to the nearest neighbor in half-sphere Hp,r is less than
2λd.

Thus the expected search ranges for the second vertex, in the while loop iterations,
should be less than 3λd. On the other hand, within this search range, there could be,
on expectation, no more than 10 data points, or, O(1) number of data points.

Therefore, for uniformly distributed data points, the while loop in Algorithm 3 will
terminate after a constant number (approximately 3–4, on expectation) of iterations.

The numerical experiment in next section confirms the claim, and it shows that
the number of iterations for the while loop does not change when the number of data
points varies from thousands to tens of millions. The number of iterations changes only
when the distribution of the data points changes. It increases when the distribution
becomes less uniform. The maximum number of iterations for the least uniform data
distribution in the experiment is about 4.7.

With Claim 3.6, we can conclude that the expected time to perform an MCP
search in a largely uniform data set is O(log n).

The above discussion also alludes to the worst case analysis of the MCP algorithm
for unevenly distributed data sets. Suppose that within the search range there are

D
ow

nl
oa

de
d 

05
/0

8/
15

 to
 1

40
.1

72
.2

53
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMUM COVERING POLYGON SEARCH ON SPHERE A1681

O(n) data points and that these points are arranged in a way such that every point
needs to be checked during the while loop; it is apparent that the worst case time
complexity is O(n logn).

It is obvious that the worst case analysis is not applicable to most applications of
the proposed MCP algorithm. For those applications in the numerical simulation of
fluid dynamics on the sphere, the grid points will never be arranged like the contrived
case, since any grid similar to the contrived grid layout will not be useful to discretize
a dynamic system.

In some applications, it is sufficient to compute an approximate MCP. We can
obtain an approximate algorithm from Algorithm 3 by simply changing the while loop
block to a one-pass block. For this approximate MCP search algorithm, we have the
same asymptotic expected time complexity. However, as is shown in the numerical
experiment, on average, it will run twice as fast as the algorithm that finds the true
MCP.

4. Numerical experiments. We carry out two numerical experiments: one for
the nearest neighbor search on the sphere using the proposed modified kd-tree and the
other for the MCP search on the sphere using the proposed MCP search algorithm.
The second experiment is conducted for two versions of the MCP search algorithm
that return a true MCP and an approximate MCP, respectively.

4.1. Experiment 1: Nearest neighbor search on the sphere using the
modified kd-tree. We test the modified kd-tree algorithm with four types of ran-
domly generated data sets. These data sets are generated with the following defini-
tions, and they are shown in Figure 4.1.

Let X be a random variable following U(0, 1) distribution and Y be a random
variable calculated from X . Let φ, λ be latitude and longitude values.

(a) Random data set with a uniform distribution on the sphere:

Ssp = {(φ, λ) | φ = cos−1(2X − 1.0)− π/2, λ = 2πX}.
(b) Random data set with a uniform distribution in latitude and longitude:

Sφλ = {(φ, λ) | φ = (X − 0.5)π, λ = 2πX}.
(c) Data set (a) plus a high density region [λ1, λ2]× [φ1, φ2]:

Ssp∪{(φ1,λ1),(φ2,λ2)} = Ssp ∪Rsp,

and

Rsp = {(φ, λ) | φ = cos−1(2Y − 1.0)− π/2, λ = λ1(1.0−X) + λ2X},
where Y = (1.0 − X)u1 + Xu2 and u1 = (cos(φ2 + π/2) + 1.0)/2.0, u2 = (cos(φ1 +
π/2) + 1.0)/2.0.

(d) Data set (b) plus a high density region [λ1, λ2]× [φ1, φ2]:

Sφλ∪{(φ1,λ1),(φ2,λ2)} = Sφλ ∪Rφλ,

and

Rφλ = {(φ, λ)|φ = φ1(1.0−X) + φ2X,λ = λ1(1.0−X) + λ2X}.
Data set (a) simulates uniform spherical grids, such as icosahedral grids [5] and

cubed-sphere grids [19], and data set (b) simulates uniform Cartesian grids, such as
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(a) Uniform distribution on the sphere. (b) Uniform distribution in φ−λ coor-
dinate.

(c) Uniform distribution on the sphere
with a high density region.

(d) Uniform distribution in φ−λ coor-
dinate with a high density region.

Fig. 4.1. Four types of randomly generated data sets used to test the performance of the modified
kd-tree search algorithm and the MCP search algorithm.

Gaussian grids [24]. Data sets (c) and (d) simulate those two types of grids with a
locally nested or compressed high density region.

We conduct the nearest neighbor search test in several ways. First we test the
full-space search, which is identical to the nearest neighbor search of the classic kd-
tree. Thus the search algorithm of the modified kd-tree should perform similarly to
that of the classic kd-tree. This test is to verify that the overhead is minimal due to
the modifications.

Then we test the modified kd-tree for the half-sphere search, with half-spheres
specified by randomly generated planes. For this test, we maintain the search range
to be the length of the side of the entire search space. We expect to observe some
performance differences compared to the full-space search.

Finally, we examine the performance of the modified kd-tree under the context
of the MCP search. Pairs of planes are generated to form various sizes of lunes of
random orientations, and we search the nearest neighbors within these lunes. In these
tests, we set the search ranges to some conservative values which are multiples of the
expected nearest neighbor distances of the data sets.

For each type of search, we test data sizes from about 10,000 to 40,000,000.
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(a) Data sets: distribution (a).
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(b) Data sets: distribution (b).
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(c) Data sets: distribution (c).
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(d) Data sets: distribution (d).

Fig. 4.2. Search test for the modified kd-tree algorithm. In each plot, the x axis indicates
the number of grid points (in thousands), and y indicates the number of floating point number
computations; each curve indicates the average number of floating point number computations for
one nearest neighbor search.

Figure 4.2 shows the test results. Each plot in the figure has its data sets created
corresponding to one of the distributions depicted in Figure 4.1. Query points are
drawn from the spherical uniform distribution (distribution (a)). A fixed number
(163,842) of queries are made to the database for each test. An average number of
floating point number operations per query for each test is obtained and used to plot
a point in each curve. For each distribution, eight different sizes of lunes are searched
for the nearest neighbor and eight curves are drawn in the corresponding plot. The
angle sizes of the lunes are set to 360◦ (whole space search), 180◦ (half space search),
90◦, 45◦, 20◦, 10◦, 5◦, and 1◦. For each lune which has size less than or equal to 90◦,
we set the search range to be five times the expected adjacent grid points distance.

We observe several things that are expected from the experiment. First, the
numbers of floating point number operations used to find the nearest neighbor follow
closely to the logarithm growth for all curves and in all four distributions of data
points. Second, there is a small increase of computation for half sphere search, which
is caused by the delay of updating the radius of the CNNB and by the “within the
search space” bound test. We notice that with an appropriate initial search range,
the performance of the search improves. Examining the plot closely, we also notice
that for the same initial search range, the smaller the angular size of the lune, the
more the computations. However, this increase of computation is rather minimum.

In addition, we implemented a nonhierarchical nearest neighbor search program.
This program implements a linear search algorithm with some enhancements. At the
initialization, grid points are sorted in their latitudes, and an appropriate number
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(a) Data sets: distribution (a).
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(b) Data sets: distribution (b).
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(c) Data sets: distribution (c).
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(d) Data sets: distribution (d).

Fig. 4.3. Search test for enhanced nonhierarchical search algorithm. In each plot, the x, y axis
and curves carry the same meaning as those in Figure 4.2.

of latitudinal zones are created. Each latitudinal zone is pointed by an entry in an
index table. When the algorithm searches the nearest neighbor of a query point, it
just needs to search the data points in the same zone (of the query point) and two
neighboring zones. Thus, the algorithm achieves a constant factor speed-up.

To compare the search performance, we run this nonhierarchical search algorithm
in the same settings. The number of queries made to the data sets are also fixed to
163,842. The data sizes range from 2.56k to 160k in order to complete the test in a
reasonable amount of time.

The test results in Figure 4.3 show a clear linear computational complexity in
data size n for the nonhierarchical search algorithm. It should be noted that for
some specific grids, the performance of the nonhierarchical algorithm can be further
improved by introducing some special algorithms and data structures. However, these
improvements are neither generally viable nor asymptotically significant.

4.2. Experiment 2: MCP search on the sphere. The MCP search algo-
rithm finds a spherical covering polygon whose vertices are closest to the given point
in their combined distance (Definition 3.1). Figure 4.4 shows an example of such a
mesh of polygons (MCPs, m = 3).

In addition to the four data sets that we used to test the modified kd-tree in
section 4.1, we also test two commonly used spherical grids in weather and climate
modeling: icosahedral grid [5] and Gaussian grid [24].

An icosahedral grid is an unstructured grid created with recursive or nonrecursive
subdivisions of the faces of an icosahedron and projections of the vertices to the sphere.
Its grid points are rather uniformly and regularly distributed over the sphere. With

D
ow

nl
oa

de
d 

05
/0

8/
15

 to
 1

40
.1

72
.2

53
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMUM COVERING POLYGON SEARCH ON SPHERE A1685

(a) (b)

Fig. 4.4. A mesh of spherical MCTs. The triangles are created from a set of uniformly
distributed random data points on the sphere (solid dots). The points to be covered (circular dots) by
the triangles are obtained from the same distribution. In the figure, (b) is a zoomed-in area within
(a), between 20◦ N and 40◦ N latitudes and 10◦ E and 30◦ E longitudes.

the standard recursive construction algorithm, the upper bound of the maximum ratio
of distances between adjacent grid points is about 1.195114 [23]. High resolution
icosahedral grids have been used in several global models to simulate small scale
atmospheric circulations [17, 21, 16].

A Gaussian grid is a Cartesian grid with its grid points equally spaced (in terms
of their longitude values) along latitudinal circles, but these latitudinal circles are not
equally spaced. Rather, they are located at the colatitudes of the arccosine of the
roots of the Legendre polynomials, the abscissas of the Gaussian quadrature, hence
the name. This grid is specially designed to efficiently discretize dynamic systems
over the sphere that are simulated using spectral methods [18, 4, 15].

We test all six types of data sets of various data sizes, similar to what we have
done for the modified kd-tree. Since we have already understood the performance
of the nearest neighbor search algorithm of the modified kd-tree, and since we know
it takes only one more call to the nearest neighbor search routine to complete a
general MCP(p) (m > 3) after an MCT(p) is found (Proposition 3.5), we focus this
test on how many iterations on average are required to find an MCT(p) in the while
loop, comparing this number with the theoretical estimate. Table 4.1 shows the test
results. The numbers in all rows are the average numbers of iterations in the while
loop computed from 163,842 searches. All query points except for those in the last
row are drawn from distribution (a). The query points in the last row are drawn from
distribution (b).

It is clear that the number of iterations for the while loop in MCP search algorithm
does not change with the data size, as predicted by the analysis. This number depends
only on the distributions of the grid points and query points. The worst case, in
our experiment, happened when both grid points and query points are nonuniformly
distributed on the sphere with much higher density in the high latitude area.

Finally, we present the overall performances of the MCP search algorithm, in
the same setting, in Figure 4.5. In the figure, plot (a) shows the performance of the
MCP search described by Algorithm 3 and plot (b) shows the performance of the
approximate version of the algorithm, which exits the while loop after one iteration.
The figure shows pretty good search performance of both versions of the algorithm to
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Table 4.1

MCP search experiment results.

Average number of iterations for the while loop in MCP search
Grid Point # 10k 40k 160k 640k 2,560k 10,240k 40,960k
Gaussian grid 3.63 3.65 3.65 3.66 3.66 3.66 3.65
Icos. grid 3.11 3.11 3.11 3.11 3.11 3.11 3.11
Distribution(a) 3.49 3.50 3.49 3.49 3.49 3.49 3.48
Distribution(b) 3.48 3.49 3.49 3.49 3.50 3.49 3.48
Distribution(c) 3.50 3.49 3.50 3.49 3.49 3.49 3.48
Distribution(d) 3.51 3.50 3.49 3.49 3.49 3.48 3.48
Gauss. & Dist.(b) 4.44 4.54 4.60 4.66 4.70 4.69 4.27
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Fig. 4.5. The MCP search performances. In both plots, the x axis indicates the number of grid
points (in thousands), and y indicates the number of floating point number computations. Plot (a):
exact MCP search. Plot (b): approximate MCP search.

very large data size. We make two observations about the MCP search performance
depicted in the figure: (1) for the most uniform grid, icosahedral grid, we get the best
performance, which clearly demonstrates the logarithm behavior; the less uniform the
grid, the greater the number of floating number computations; (2) for the approximate
version of the MCP algorithm, the speed-ups are not proportional to the reduction of
the number of iterations, which is closely related to the number of modified kd-tree
searches. The reason is that during the first iteration in the while loop the search
range is set to a much bigger default value (π, line 9 in Algorithm 2), compared to the
searches that follow in the while loop; therefore more nodes in the kd-tree are visited,
and more computations are needed. The second observation is consistent with the
performance of the modified kd-tree in Figure 4.2.

In practice, the performance and robustness of the MCP search algorithm can
be further enhanced by adding some practical safeguards for the special cases that
will cause the algorithm to search a large amount of data points due to the round-off
errors. One such special case would be trying to find an MCP for a query point at the
poles from a Cartesian grid (Gaussian grid, for example), where all O(

√
n) nearest

neighbors are equal-distant to the query point. Without a safeguard, the round-off
error may delay the exit of the while loop significantly, resulting in many unnecessary
computations. To avoid this, we can check if the exit condition is within the range of
round-off error and exit the while loop earlier if necessary.

5. Conclusion. The analysis and numerical experiments have shown that the
modified kd-tree and the MCP search algorithms are efficient and robust for various
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spherical grids and for the data points that are randomly generated and uniformly
distributed on the sphere. Even for the most unevenly distributed data sets in the
numerical experiments we conducted, the search algorithms perform quite well. The
proposed MCP algorithm takes an O(n) space and O(n logn) time to complete the
initialization. After that, it takes an expected O(log n) time to find the MCP(p) for
a given query point p. In practice, the proposed MCP search algorithm reduces the
computation time to find all MCPs in high resolution grids (ranging from millions to
hundreds of millions of grid points) from a few hours to less than one minute.

The modified kd-tree algorithm can be used in other applications which require
nearest neighbor searches in partial Euclidean spaces (or partial spheres). For exam-
ple, if we want to find a chain of data points in a narrow stripe on the sphere, we
can apply the modified kd-tree algorithm repeatedly with the newly found nearest
neighbor as the new query point and with search lune covering the narrow stripe to
be searched. In pattern recognition and vector quantization, the modified nearest
neighbor search algorithm could be used to find a closest match in a partial feature
vector space. There could be various applications of the modified kd-tree algorithm
in scientific computations.

The MCP search algorithm and the modified kd-tree algorithm proposed could
be used in general multidimensional settings. Nothing in the description of both algo-
rithms limits search spaces to the three-dimensional Euclidean space (two-dimensional
sphere). In fact, all computations are described in the general d dimensional Euclidean
space. The MCP algorithm proposed can be used to find a set of m vertices on the
(d − 1)-sphere for a query point p, such that their combined angular distance (as
defined in d-vector space) to p is minimized and the polygon defined by the m found
vertices covers (embeds) the query point p. The performances of both search algo-
rithms will decrease with the growth of dimension d. However, as long as d� logn,
the proposed algorithms will still provide a significant computational advantage over
linear search.

Some considerations for parallel implementation have been given to the MCP
search algorithm. Since the algorithm has an expected logarithm search time, the
speed-up of the search time is not the main goal for parallelization. The primary
motivation for parallelization is to use high performance computers with distributed
memory systems to reduce preprocessing time and space on each processor, so that
we can solve this search problem on those computer systems for a much greater data
size. It is straightforward to implement the algorithm in coarse-grained parallelism on
a parallel computer with a distributed memory system. At each processor, a local kd-
tree is constructed from the grid points assigned to the processor. A nearest neighbor
query request is broadcasted to all P processors, and each processor conducts its own
local search with the same global search algorithm. After all searches are completed,
the local results are gathered from P processors, and the global nearest neighbor,
which is needed by the MCP search algorithm, is obtained from the local results.
To speed up the updating of the radiuses of CNNBs, a global minimum radius of
CNNB could be gathered and broadcasted once all local searches reach their first leaf
nodes.
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[2] P. Agarwal and J. Matoušek, Ray shooting and parametric search, in Proceedings of the
24th ACM Symposium on the Theory of Computing, 1992, pp. 517–526.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, An optimal algo-
rithm for approximate nearest neighbor searching, in Proceedings of the 5th ACM-SIAM
Symposium on Discrete Algorithms, 1994, pp. 573–582.

[4] A. Baede, M. Jarraud, and U. Cubasch, Adiabatic Formulation and Organization of
ECMWF’s Spectral Model, Technical report, European Centre for Medium Range Weather
Forecasts, Reading, UK, 1979.

[5] J. R. Baumgardner and P. O. Frederickson, Icosahedral discretization of the two-sphere,
SIAM J. Numer. Anal., 22 (1985), pp. 1107–1115.

[6] J. Bentley, B. Weide, and A. Yao, Optimal expected-time algorithms for closest point prob-
lems, ACM Trans. Math. Software, 6 (1980), pp. 563–580.

[7] J. Bentley, Multidimensional binary search trees used for associative searching, Comm. ACM,
18 (1975), pp. 509–517.

[8] S. Brin, Near neighbor search in large metric spaces, in Proceedings of the 21st International
Conference on Very Large Data Bases, 1995, pp. 574–584.

[9] K. L. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput., 17
(1988), pp. 830–847.

[10] K. L. Clarkson, An algorithm for approximate closest-point queries, in Proceedings of the
10th ACM Symposium on Computational Geometry, 1994, pp. 160–164.

[11] C. Feustel and L. Shapiro, The nearest neighbor problem in an abstract metric space, Pattern
Recognition Letters, 2 (1982), pp. 125–128.

[12] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An algorithm for finding best matches in
logarithmic expected time, ACM Trans. Math. Software, 3 (1977), pp. 209–226.

[13] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, 1998, pp. 604–613.

[14] P. W. Jones, First and second-order conservative remapping schemes for grids in spherical
coordinates, Mon. Wea. Rev., 127 (1998), pp. 2204–2210.

[15] M. Kanamitsu, Description of the NMC global data assimilation and forecast system, Wea.
Forecasting, 4 (1989), pp. 335–342.

[16] J.-L. Lee and A. E. MacDonald, A finite-volume icosshedral shallow water model on local
coordinate, Mon. Wea. Rev., 137 (2009), pp. 1422–1437.

[17] D. Majewski, D. LierMann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul,

and W. Wergen, The operational global icosahedral-hexagonal gridpoint model GME:
Description and high-resolution tests, Mon. Wea. Rev., 130 (2002), pp. 319–338.

[18] S. A. Orszag, Transform method for calculation of vector coupled sums: Application to the
spectral form of the vorticity equation, J. Atmos. Sci., 27 (1970), pp. 890–895.

[19] W. M. Putman and S.-J. Lin, A finite-volume dynamical core on the cubed-sphere grid, in
Numerical Modeling of Space Plasma Flows: Astronum-2008, Astronomical Society of the
Pacific Conference Series 406, 2009, pp. 268–276.

[20] R. Swinbank and J. Purser, Fibonacci grids: A novel approach to global modelling, Q.J.R.
Meteorol. Soc., 117 (2006), pp. 1769–1793.

[21] H. Tomita, K. Goto, and M. Satoh, A new approach to atmospheric general circulation
model: Global cloud resolving model NICAM and its computational performance, SIAM J.
Sci. Comput., 30 (2008), pp. 2755–2776.

[22] H. Tomita, M. Satoh, and K. Goto, A new dynamical framework of global nonhydrostatic
model using the icosahedral grid, Fluid Dyn. Res., 34 (2004), pp. 357–400.

[23] N. Wang and J. Lee, Geometric properties of the icosahedral-hexagonal grid on the two-sphere,
SIAM J. Sci. Comput., 33 (2011), pp. 2536–2559.

[24] W. M. Washington and C. L. Parkinson, An introduction to three-dimensional climate
modeling, University Science Books, Sausalito, CA, 2005.

[25] P. N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric
spaces, in Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, 1993,
pp. 311–321.D

ow
nl

oa
de

d 
05

/0
8/

15
 to

 1
40

.1
72

.2
53

.1
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


